April 1998

National Semiconductor

LM1558/LM1458 **Dual Operational Amplifier**

General Description

The LM1558 and the LM1458 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the temperature range from 0°C to +70°C instead of -55°C to +125°C.

Features

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption 8-lead can and 8-lead mini DIP
- No latch up when input common mode range is exceeded

© 1999 National Semiconductor Corporation DS007886

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 5)

()	
Supply Voltage	
LM1558	±22V
LM1458	±18V
Power Dissipation (Note 2)	
LM1558H/LM1458H	500 mW
LM1458N	400 mW
Differential Input Voltage	±30V
Input Voltage (Note 3)	±15V
Output Short-Circuit Duration	Continuous

Operating Temperature Range LM1558 LM1458	–55°C to +125°C 0°C to +70°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Soldering Information	
Dual-In-Line Package	
Soldering (10 seconds)	260°C
Small Outline Package	
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C
See AN-450 "Surface Mounting Methods a on Product Reliability" for other methods o surface mount devices.	and Their Effect of soldering
ESD tolerance (Note 6)	300V

Electrical Characteristics (Note 4)

Parameter	Conditions	LM1558		LM1458			Units	
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \le 10 \text{ k}\Omega$		1.0	5.0		1.0	6.0	mV
Input Offset Current	$T_A = 25^{\circ}C$		80	200		80	200	nA
Input Bias Current	T _A = 25°C		200	500		200	500	nA
Input Resistance	$T_A = 25^{\circ}C$	0.3	1.0		0.3	1.0		MΩ
Supply Current Both	$T_{A} = 25^{\circ}C, V_{S} = \pm 15V$		3.0	5.0		3.0	5.6	mA
Amplifiers								
Large Signal Voltage Gain	$T_{A} = 25^{\circ}C, V_{S} = \pm 15V$	50	160		20	160		V/mV
	V_{OUT} = ±10V, $R_L \ge 2 \ k\Omega$							
Input Offset Voltage	$R_{S} \le 10 \ k\Omega$			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1.5			0.8	μA
Large Signal Voltage Gain	$V_{S} = \pm 15V, V_{OUT} = \pm 10V$	25			15			V/mV
	$R_L \ge k\Omega$							
Output Voltage Swing	$V_{S} = \pm 15 V, R_{L} = 10 \text{ k}\Omega$	±12	±14		±12	±14		V
	$R_L = 2 k\Omega$	±10	±13		±10	±13		V
Input Voltage Range	$V_{\rm S} = \pm 15 V$	±12			±12			V
Common Mode	$R_{S} \le 10 \ k\Omega$	70	90		70	90		dB
Rejection Ratio								
Supply Voltage	$R_{S} \le 10 \ k\Omega$	77	96		77	96		dB
Rejection Ratio								

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: The maximum junction temperature of the LM1558 is 150°C, while that of the LM1458 is 100°C. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of 150°C/W, junction to ambient or 20°C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 187°C/W, junction to ambient.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $V_S = \pm 15V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified. With the LM1458, however, all specifications are limited to $0^{\circ}C \le T_A \le 70^{\circ}C$ and $V_S = \pm 15V$.

Note 5: Refer to RETS 1558V for LM1558J and LM1558H military specifications.

Note 6: Human body model, 1.5 k Ω in series with 100 pF.

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N	National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
V	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5639-7560
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
www.	national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

MC1458

LINEAR INTEGRATED CIRCUIT

DUAL OPERATIONAL AMPLIFIER

DESCRIPTION

The UTC **MC1458** is a high performance dual operational amplifier. It is designed for a wide range of analog applications. The high gain and wide range of operating voltages provide superior performance in summing amplifier, voltage follower, integrator, active filter, function generator and general feed back applications.

FEATURES

- * Low power consumption
- * Wide input voltage range
- * No latch-up
- * High gain
- * Short-circuit protection
- * Frequency compensation is unnecessary

*Pb-free plating product number: MC1458L

ORDERING INFORMATION

Order Number		Daakaga	Packing	
Normal	Lead Free Plating	d Free Plating Package		
MC1458-D08-T	MC1458-D08-T MC1458L-D08-T		Tube	
MC1458-S08-R	MC1458L-S08-R	SOP-8	Tape Reel	
MC1458-S08-T	MC1458L-S08-T	SOP-8	Tube	

MC1458

■ PIN CONFIGURATIONS

TEST CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V _{CC}	-22 ~ +22	V
Differential Input Voltage		V _{I(DIFF)}	-30 ~ +30	V
Input Voltage		V _{IN}	-15 ~ +15	V
Power Dissipation		Б	300	m\//
		PD	500	IIIVV
Output Short Circuit Duration			Infinite	
Operating Ambient Temperature Range		T _{OPR}	0 ~ 70	°C
Storage Temperature Range		T _{STG}	-65~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (V_{CC}=±15V,Ta=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CON	MIN	TYP	MAX	UNIT	
Input Offect Voltage (P-<10kO)	V	Ta=+25°C		1	5	mV	
Input Onset Voltage (R _S =10K22)	VI(OFF)	0°C ≤Ta ≤ 70°C				6	mV
Input Offset Current			2	200	nA		
	I(OFF)	0°C ≤ Ta ≤ 70°C				300	nA
Input Rias Current		Ta=+25°C			30	500	nA
	I(BIAS)	0°C ≤Ta ≤ 70°C				800	nA
Large Signal Voltage Gain	G	Ta=+25°C		50	200		V/mV
(Vo=+-10V,RL=2kΩ)	0,	0°C ≤Ta ≤ 70°C		25			V/mV
Supply Voltage Rejection Ratio	S\/P	Ta=+25°C		77	90		dB
(Rs≤10kΩ)	SVK	0°C ≤Ta≤70°C		77			dB
Supply Current(all Amp. no Load)	100	Ta=+25°C			2.3	5	mA
	ICC	0°C ≤Ta ≤ 70°C				6	mA
Input Common Mode Voltago Bango	Vakon	Ta=+25°C		±12			V
Input Common Mode Voltage Range	V IN(CM)	0°C ≤Ta ≤ 70°C		±12			V
Common-Mode Rejection Ratio	CMP	Ta=+25°C		70	90		dB
(R _S ≤10kΩ)	CIVIR	0°C ≤ Ta ≤ 70°C		70			dB
Output Short-Circuit Current	los	Ta=+25°C		10	20	35	mA
		Ta=+25°C	R∟=10kΩ	12	14		V
Output Voltage Swing	+\/opp		$R_L=2k\Omega$	10	13		V
Output voltage Swillig	Ŧvobb		R∟=10kΩ	12			V
			$R_L=2k\Omega$	10			V
Slew Rate	SR	V_{IN} =±10V, R _L =2kg	Ω, C _L =100pF,	0.2	0.8		V/μs
		$1a=+25^{\circ}$ C, unity (-
Rise Time	tr	$Ta=+25^{\circ}C$, unity g	Ω, CL= 100pF, jain		0.3		μS
Over-Shoot	Kos	V _{IN} =20mV, R _L =2k	Ω,C _L =100pF,		5		%
		Ta=+25°C, unity g	jain				
Input Resistance				0.3	2		MΩ
Common-Mode Input Impedance	Zin				200		MΩ
Input Capacitance					1.4		pF
Output Resistance	Rout				75		Ω
Full Power Bandwidth	FBw	R _L =2kΩ,V _{OUT} ≥ ±1 G _V =1,THD ≤ 5%	0V,		14		KHz
Unity Gain Bandwidth	GBw	V _{IN} =10mV, R _L =2k Ta=+25°C	Ω, C∟=100pF,		1		MHz
Gain Bandwidth Product	GBP	V _{IN} =10mV,R _L =2kΩ t=100kHz.Ta=+25	Ω, C _L =100pF, 5°C	0.4	1		MHz

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Total Harmonic Distortion	THD	F=1kHz, Av=20dB, R _L =2kΩ, V _{OUT} =2Vpp,C _L =100pF,Ta=25°C		0.02		%
Equivalent Input Noise Voltage	eN	F=kHz, Rs=100Ω		45		<u>nV</u> √ Hz
Phase Margin	φm			65		Deg.
Gain Margin	Am			11		dB
Channel Separation	Vo1/Vo2			120		dB

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

